STUDY OF FURAN COMPOUNDS

XXXII. New Polycyclic Spirans of the 1,6-Dioxaspiro[4,4]nonane Group*

A. A. Ponomarev, I. A. Markushina, and L. V. Popova Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 3, pp. 411-415, 1967 UDC 547.722¹.727.728:543.422:542.941.7

Research on synthesis of polycyclic spirans of the 1, 6-dioxaspiro-[4, 4]nonane group is continued. Electrolysis of methanol solutions of 2-furylcyclopentanol, 2-(5'-methyl-furfuryl)cyclopentanol, and 2-furfuryl-1-indanol, gives, by intramolecular alkoxylation, spiro-{perhydrocyclopenta[b]furan-2, 2'-(5'dihydrofuran)}, spiro{perhydrocyclopenta[b]furan-2, 2'-(5'-methoxy-5'-methyl-2', 5'-dihydrofuran)}, and spiro{2, 3, 3a, 8b-tetrahydro-4H-indeno[1, 2-b]furan-2, 2'-(5'-methoxy-2', 5'-dihydrofuran)}, hitherto undescribed in the literature. Depending on the conditions, catalytic hydrogenation of these gives: spiro{perhydrocyclopenta[b]furan-2, 2'-(5'-methoxytetrahydrofuran)}, spiro{2, 3a, 8b-tetrahydro-4H-indeno[1, 2-b]furan-2, 2'-(5'-methoxytetrahydrofuran)}, spiro{perhydrocyclopenta[b]furan-2, 2'-tetrahydrofuran}, and spiro{2, 3, 3a, 8b-tetrahydro-4H-indeno[1, 2-b]furan-2, 2'-tetrahydrofuran}.

It was previously stated [2, 3], that under conditions where furan alcohols with a hydroxyl a position 3 in the side chain suffer alkoxylation, they cyclize intramolecularly to 2-alkoxy derivatives of 1,6-dioxaspiro-[4,4]non-3-ene. The intramolecular alkoxylation reaction takes place generally, and can be extended to various compounds containing a furan ring and a similarly situated hydroxyl group [4,5], among others, to furfuryl-substituted mono- and bicyclic alcohols of the cyclohexane series [5]. The present paper is concerned with further research in this field, as applied to cyclopentane derivatives.

Experiments using as model compounds 2-furfuryl-cyclopentanol (I), 2-(5'-methylfurfuryl)cyclopentanol (II), and 2-furfuryl-1-indanol (III) showed that when they were electrolyzed in methanol solution, reaction also took place intramolecularly, giving spiro{per-hydrocyclopenta[b]-furan-2, 2'-(5'methoxy-2', 5'-dihydrofuran)} (IV), spiro{perhydrocyclopenta[b]furan-2, 2'-(5'methoxy-5'-methyl-2', 5'-dihydrofuran)} (V), and spiro{2, 3, 3a, 8b-tetrahydro-4H-indeno[1, 2-b]-furan-2, 2'-(5'-methoxy-2', 5'-dihydrofuran)} (VI) (Table 1).

$$\begin{array}{c} \text{CH}_{2}\text{OH} & \text{CH}_{3}\text{OH} \\ \text{OH} & \text{I, II} \\ \text{II, IV } & \text{R} = \text{H} \\ \text{II, V } & \text{R} = \text{CH}_{3} \\ \end{array}$$

Hydrogenation of compounds IV and VI under mild conditions (room temperature, over Raney nickel, and under pressure) gave good yields of spiro{per-hydrocyclopenta[b]furan-2, 2'-(5'-methoxytetrahydro-furan)} (VII) and spiro{2, 3, 3a, 8b-tetrahydro-4H-indeno[1, 2-b]furan-2, 2'-(5'-methoxytetrahydrofuran)} (VIII) (Table 1).

Hydrogenation under more drastic conditions (over Raney nickel, pressure 100-200 atm, temperature 100°-120° C) led to reduction of the double bond in the 5-membered ring being accompanied by splitting off of the methoxyl group, and formation of spiro{per-hydrocyclopenta[b]furan-2,2'-tetrahydrofuran} (IX), and spiro[2,3,3a,8b]tetrahydro-4H-indeno[1,2-b]-furan-2,2'-tetrahydrofuran} (X) (Table 1).

The IR spectra of polycyclic spirans IV-X, determined in the region 700–1800 cm-1, are characterized by a large number of high-intensity lines, which are also characteristic of similar spiroacetal structures [3, 4, 6-8]. (Figs. 1-3). Noteworthy for all the spirans are intense bands in the 1000–1100 cm⁻¹ region, connected with valence vibrations of the C—O—C group.

Deformation vibration bands of methyl and methylene groups are found at 1380 and 1460 cm⁻¹. The presence of a double bond in compounds IV, V, and VI is confirmed by a band of valence vibrations of the C=C bond at 1650 cm⁻¹. The spectra of spirans VI, VIII, and X have absorption bands at 1510 and 1630 cm⁻¹, characteristic of the aromatic ring.

^{*}For Part XXXI see [1].

Table 1
Polycyclic Methoxy-1,6-dioxaspiro[4,4]nonanes and their Catalytic Hydrogenation
Products

Com- pound	Bp, ° C (pressure mm)	d_4^{20}	n _D ²⁰	MR _D			С, %		Н, %		Yield.
				Found	Calcu- lated		Found	Calcu- lated	Found	Calcu- lated	%
IV	8485 (3)	1.108	1.4870	51.03	50.76	C ₁₁ H ₁₆ O ₃	66.65 66.98	67.32	8.08 8.50	8.22	72.5
V	99100 (5)	1,067	1.4761	55.17	55.47	$C_{12}H_{18}O_3$	68.49 69.04	68,54	8.45 8.49	8.62	68
VI	129—132 (1)	1.1784	1.5550	66.53	65.73	$C_{15}H_{16}O_3$	73.94	73.75	6.70	6.60	72
IIV	85—86 (5)	1.071	1.4695	51.60	51.33	$C_{11}H_{18}O_3$	73.56	66.64	6.82 9.50	9.15	83
VIII	118—120 (1)	1.1531	1.5366	66.66	66.19	$C_{15}H_{18}O_3$	66.87 72.63	73,15	9.32 7.46	7.36	68
ΙX	8586 (10)	1.052	1.4742	44.96	45.07	$C_{10}H_{16}O_2$	72.79 71.91	71.39	7.31 9.37	9,59	78.5
X	141—144 (3)	1.1352	1.5411	59.87	59.93	C ₁₄ H ₁₆ O ₂	70.99 77.79 77.94	77.75	9.58 8.14 8.19	7.46	71

 ${\bf Table} \ 2 \\ {\bf Electrolysis} \ {\bf Conditions} \ {\bf for} \ {\bf Compounds} \ {\bf II} \ {\bf and} \ {\bf III} \\$

Compound	Quantity of starting material, mole	Current, a	Voltage, V	Temperature in the electrolysis cell, °C
111	0.36	5.0—4.0	9—20	-12
11	0.15	4.0—3.0	8—18	-16

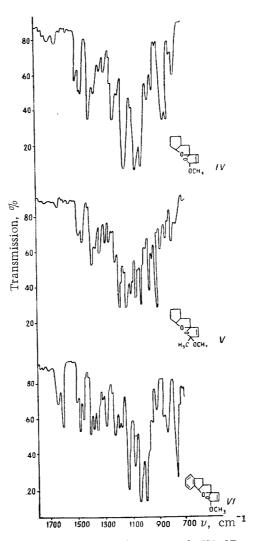


Fig. 1. IR spectra of compounds IV-VI.

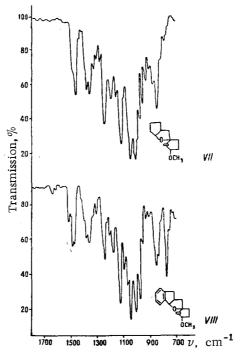


Fig. 2. IR spectra of compounds VII and VIII.

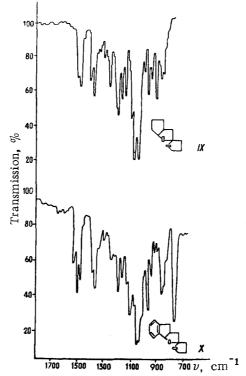


Fig. 3. IR spectra of compounds IX and \boldsymbol{X} .

EXPERIMENTAL*

- 2-Furfurylidenecyclopentanone (XI) was prepared as per the literature [9].
- **2-(5'-Methylfurfurylidene)cyclopentanone (XII)** was prepared similarly, by condensing 5-methylfurfural with cyclopentanone in the presence of 0.1 N NaOH. Yield 63.6%, bp 151°-153° C (11 mm); 62°-63° C. Found: C 74.55; 74.43; H 6.80; 6.67%. Calculated for $C_{11}H_{12}O_2$: C 74.98; H 6.86%.
- 2-Furfurylidene-1-indanone (XIII) was prepared by condensing furfural with 1-indanone in ethanol solution, with cooling, and in the presence of 20% NaOH solution. Yield 93%, bp 115.5°-116.5° C. Found: C 79.61; 79.58; H 4.90; 5.01%. Calculated for $C_{14}H_{10}O_2$: C 79.98; H 4.79%.
- 2-Furfurylcyclopentanol (I), 2-(5'-methylfurfuryl)-cyclopentanol (II), and 2-furfuryl-1-indanol (III) were prepared by hydrogenating XI, XII, and XIII at 120° C 100-120 atm over Cu chromite catalyst.
- **2-Furfurylcyclopentanol:** yield 70%, bp 110°-111° C (9 mm); d_4^{20} 1.042; n_D^{20} 1.5043. Found: C 71.88; 72.42; H 8.56; 8.60%; MR_D 46.22. Calculated for $C_{10}H_{14}O_2$: C 72.26; H 8.49%; MR_D 46.50.
- **2-(5'-Methylfurfuryl)** cyclopentanol: yield 67%, bp 123°-126° C (10 mm); d_4^{20} 1.056; n_D^{20} 1.5030. Found: C 73.35; 73.45; H 9.23; 9.11%; MR_D 50.43. Calculated for C₁₁H₁₆O₂: C 73.29; H 8.95%; MR_D 50.81.
- 2-Furfuryl-1-indanol: yield 82%, bp 165°-167° C (5 mm); d_4^{20} 1.1472; n_D^{20} 1.5668. Calculated for $C_{14}H_{14}O_2$: C 78.48; H 6.59%; MR_D 61.08.

Spiro{perhydrocyclopenta[b]furan-2, 2'-(5'-methoxy-2', 5'-dihydrofuran)} (IV). 58.2 g (0.35 mole) freshly-distilled 2-furfurylcyclopentanol and 5 g (0.051 mole) NH₄Br in 220 ml MeOH were placed in an electrolysis cell with a Ni cathode and a carbon anode [10,11]. The solution was cooled to -12°, and kept there during the entire run. Current 4-5 A, voltage 9-20 V. At the end of the electrolysis, the solution was treated with NaOMe (1.2 g Na in 20 ml MeOH). MeOH and NH₃ were vacuum-distilled off on a water-bath. The precipitate of NaBr was filtered off and washed on the filter with ether a few times. The ether was taken off, and the residue vacuum-distilled, yield 49.5 g (72.5%).

Table 2 gives the electrolysis conditions for compounds II and III.

Spiro{perhydrocyclopenta[b]furan-2, 2'-(5'-methoxy-tetrahydrofuran)} (VII). 30.0 g compound IV, 35 ml

dry EtOH, and 3 g Raney Ni were charged into a 250 ml rotating steel autoclave. Initial hydrogen pressure 80 atm, room temperature. Hydrogenation was complete when $3.8\ l$ hydrogen had been absorbed. The catalyst was filtered off, the solvent distilled off on a water-bath, and the residue then vacuum-distilled.

Compound VI was hydrogenated similarly.

Spiro{perhydrocyclopenta[b]furan-2, 2'-tetrahydrofuran} (IX). 20.0 g compound VII, 45 ml dry EtOH, and 2 g Raney Ni were charged into a 250 ml rotating steel autoclave. Initial hydrogen pressure 120 atm, temperature 100° C. Hydrogenation was complete when 5 l hydrogen had been absorbed. The product was worked up in the way described above. The residue was vacuum-distilled.

The IR spectra were determined with a H-800 (Hilger) spectrophotometer, over the range 700-1800 cm⁻¹, using a NaCl prism. Two compounds were investigated in the liquid state, in the form of capillary films between NaCl plates. **

REFERENCES

- 1. A. A. Ponomarev, A. S. Chegolya, N. S. Smirnova, and V. N. Dyukareva, KhGS [Chemistry of Heterocyclic Compounds], 163, 1966.
- 2. A. A. Ponomarev and I. A. Markushina, DAN, 126, 99, 1959.
- 3. A. A. Ponomarev and I. A. Markushina, ZhOKh, 31, 554, 1961.
- 4. A. A. Ponomarev and I. A. Markushina, ZhOKh, 33, 3957, 1963.
- 5. A. A. Ponomarev and I. A. Markushina, KhGS [Chemistry of Heterocyclic Compounds], 195, 1965.
- 6. C. R. Eddy, M. E. Wall, and M. K. Scot, Anal. Chem., 25, 266, 1953.
- 7. R. N. Jones, E. Katzenellenbogen, and K. Dobriner, J. Am. Chem. Soc., 73, 158, 1953.
- 8. E. Graf and E. Dahlke, Chem. Ber., 97, 2785, 1964.
 - 9. C. A., 50, 10702, 1956.
- 10. A. A. Ponomarev and I. A. Markushina, Uch. zap. SGU, 71, 135, 1959.
- 11. A. A. Ponomarev and I. A. Markushina, ZhOKh, 30, 976, 1960.

26 November 1965

Chernyshevskii Saratov State University

^{*}With N. A. Todoseichuk.

^{**}By A. D. Peshekhonova.